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Abstract—An elegant vectorial approach to consider arbitrary combinations of wind/ice/self-weight
loadings on cables is formulated from a synthesis of the existing knowledge. Both the theory and practical
considerations are discussed. The simplicity of the method and its implementation are respectively
illustrated by an exampie and pertinent excerpts of source code taken from a commercially available

program.

L. INTRODUCTION

‘Guyed-towers, although visually of a great simplicity,

are rather complex to analyse. While crude analytical
assumptions led to adequate design in earlier days[1],
it was quickly realized that the use of computers
could not only accelerate the manual analyses but
also lead to morc reliable designs by cnabling the
engineer to consider more complex and realistic
models of structural behaviour. Nowadays, numer-
ous computer programs, ‘tailor-made’ to expediently
analyse these structures, are available to practising
engineers and manual calculations have cffectively
disappeared, leaving more time to address design-
related issues and other aspects of the problem. The
majority of these programs model the mast as a beam
supported by clastic springs whose stiffnesses are
adjusted to account for the cables’ non-linearity
through an iteration process.

There has been, however, in recent years, a desire
in the industry to enhance the analytical capabilities
of the existing programs to be able to analyse guyed-
structures of any configuration in a fully integrated
geometrically non-linear framework, thus allowing to
overcome some limitations of the existing software
and minimize the need for engineering simplifications
and/or manual post-processing. Researchers have
demonstrated the viability of large-displacements for-
mulations [2—4], and some of the on-going efforts
invested to implement the aforementioned capabili-
ties within a production environment have already
been reported [3, 6). The author, being involved in
such development work, has had the opportunity to
review source code from a number of guyed-tower
analysis programs, including some of a recent
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vintage, and has, in many instances, found that
many structural engincering and programming as-
pects still follow obsolete, incflicient or too restrictive
practices. The method used to consider arbitrary
combinations of wind/ice/self-weight loadings on
guys is one such case. Non-intuitive geometric con-
ventions and ‘congested’ trigonometric operations
arc widespread in existing code, This paper proposes
a more elegant vectorial approach to this problem
that simultaneously minimizes in-core storage re-
quirements.

The introduction of vectorial algebra-in structural
engineering programs is {ar from new. Among earlier
examples, Wilson [7] introduced vectorial notions in
a general-purpose finite-clement program for the
identification of becams’ weak and strong axes of
bending, thus greatly simplifying the cumbersome
previous practice. Similarly, some of the concepts of
a vectorial approach for loads on guys have been
formulated previously [8]; however, a comprehensive
cxplanation of this method and how it can be
efliciently implemented is not available. This may
explain why it remains unknown to many engineers
currently involved in developing the next generation
of guyed-towers analysis software. This paper hopes
to remediate this situation; both a theory for the
aforementioned vectorial strategy as well as practical
considerations are discussed. Finally, the simplicity of
the method and its implementation are respectively
ilustrated by an cxample and pertinent excerpts of
source code taken from a commercially available
program [5].

2. DESCRIPTION OF VECTORIAL APPROACH TO
LOADS ON CABLES

The mcthod is applicable to any guy arbitrarily
oriented in a 3-D cartesian space and exposed to



332 M. BRUNEAU

Guyed-Tower

Arbitrary
Wind Direction

Arbitrary Guy
Oricntation
n 3-D Space

\\~ _J : /_/
Fig. 1. Arbitrary wind and cable directions in a 3-D
cartesian spuce.

wind, as shown in Fig. 1. Traditionally, the wind-
input to guyed-tower analysis programs is expressed
as a function of azimuth angles form a north
direction, but conversion by a pre-processor program
to a cartesian system is a trivial task. It is also
normally assumed in guyed-tower analysis that only
the component of wind normal to the cable loads it,
the drag coeflicient for the wind component parallel
to the guy being virtually zero. A further simplifica-
tion is obtained by considering the acting wind
component perpendicular to the chord between the
guy's attachment points, as opposed to the actual
cable profile; this is deemed sufficiently accurate in
practice as cables are usually pre-tensioned to high
values, thus producing little sagging. Nonctheless,
if cables with cxcessively large sag were to be
analysed, improvements in accuracy could be ob-
tained simply by subdividing each cable into many
shorter cable-clements for which the sum of the
chords would closely approximate the actual sagging
profile; for actual guyed-towers, this refinement is
rarely necessary.

Initially, the magnitude and orientation of only
two vectors are known: that of the blowing wind (W)
and the one defined by connecting ends ‘i’ and *’ (i.e.
the chord) of the cable under consideration (C). In
the plane defined by these two vectors, the orientation

of the vector perpendicular to that chord is simply
obtained by

CxWyxC=W, . H

as illustrated in Fig. 2.
The magnitude of that wind force perpendicular to
the cable can be obtained from the well-known

expression for the wind-induced drag force on a
structural element

Fog =0.5C,p V34, (2)
where C;, is the drag cocfficient, p is the air density,

V the wind velocity, and A the structure’s projection
in the plane perpendicular to the wind direction.

However, some design  standards use slightly
modified forms of this cquation. For example, the
Canadian standard CAN-CSA-S37-M86 ‘Antennas,
Towers and Antenna-supporting Structures’ rec-
ommends

Fyag = 0.5pCp A, 3
where
p=49C.GC,
where
g (kPa) = 50 x 10~¢¥? (km/hr), 4)

C., C, and C, are coefficicnts taking into account
clevation, gust and acccleration effects, respectively,
and g is the reference velocity pressure normally
obtained from probabilistic contour maps or site-
specifically from specialized public agencies [9].

The magnitude of the wind drag force acting
perpendicular to the guy's chord can then be obtained
by substituting, in eqns (3), the drag coefficient C,, for
a normal round cross-section, and correspondingly
the component of wind-velocity perpendicular to the
guy (Vp), ie.

Vi=(Vsina)’=V?sin’a = V¥l —cos?a), (5)

where the value of cos(z) can be calculated by the
dot-product of unit vectors parallel to W and C,
respectively. While the rigour of this derivation can
be debated, experimental results have demonstrated
this to be a valid and realistic model for guy ca-
bles {10].

The resulting magnitude and orientation ‘of the
total load-vector applied to the cable (¥;4;) is ob-
tained by vectorial addition of the gravity load-
vectors (ice and self-weight) and the above normal
wind load one; this in turn dictates the direction of
the cable sag and the plane within which lie all
resulting tension end-forces.

!
il’lmpcrwxﬁm!n
;lovoarxc
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%, - %,
i
il cxwxc

Fig. 2. Cross-product operations to obtain vector of wind
perpendicular to cable.
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Effectively, the analysis of the cable element cu
now proceed successfully in the new plane defin...
using any of the numerous 2-D cable element formu-
lations available ([8,11,12], to name a few). For
example, one such formulation defines the local y-
axis (y) as being parallel and opposed in direction to
the calculated Vyor. In that case, the other two local
axes (normalized vectors x and z) would be obtained
by cross products while the vertical (/) and horizontal
(h) local projections of the guy would be calculated
by dot-products, i.e.

y=-Vior (6)

z=Cxy )
X=yxz ®)
I=x-C ©)
h=y-C. (10)

Furthermore, using the previously defined vectorial
information, a transformation matrix can be assem-
bled to obtain the cable stiffness matrix and end-
forces in the global coordinate system from those
calculated in the element’s local coordinate system.
Typically

Fglobal = TFipeq (i)
Kg]obal = TKxal TT’ (12)

where T is the transformation matrix, Fand K are the
vector of end-forces and stiffness matrix, respectively,
in the local or global coordinate system as sub-
scripted. The specifics of that transformation matrix
are presented in the following section.

3. EFFICIENT IN-CORE MEMORY UTILIZATION AND
SOURCE CODE

Clearly, the use of a cross-product subroutine will
minimize and make more legible the coding. One such
subroutine (CROSS) is presented in Appendix A
along with another subroutine (VECTOR) that re-
turns the normalized vector and distance between two
points; these are slightly adapted from a public-
domain structural analysis program{7]. It is note-
worthy that the vectorial operations mostly require
additions and multiplications, operations quickly
performed by computers as compared to trigono-
metric functions.

Within the main program, a single 4 x 4 matrix
(VC) is dcfined in which intermediate and final
vectors resulting from the above cross- and dot-
products are stored column-wise; as no other tempor-
ary matrices are needed, memory usage is optimized.
The VC matrix is structured such that, for any vector,
the entries on the first three rows are the normalized
X, Y and Z cartesian coordinates of that vector, while
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length is kept on the fourth row. Both the

CTOR and CROSS subroutines are designed to
comply with this convention. Furthermore, the delib-
crate column-wise storage of veetors in VC is also
intended to simplify interaction with VECTOR and
CROSS; while the latter are designed to operate on
vectors, the address VC(1, k) of the vector in column
k, in accordance with FORTRAN conventions for
reading matrices (i.c. column-wise), is sufficient infor-
mation to extract that vector from VC and pass it to
the subroutine, eliminating the need for intermediate
manipulation of vectors.

The calculation of the eflective resulting total
uniformly distributed load on the cable and, conse-
quently, the definition of the local coordinate system
can be contained within a single subroutine. One such
routine, CLOAD, is proposed in Appendix B; many
comments describing the procedures are already em-
bedded in the code. Yet, a few practical aspects
deserve some additional consideration and are dis-
cussed in the following.

Col.1 Col.2 Col.3 Col.4

Row 1 w C
Row 2 Wind - - Chord
Row 3 | Vector ' Vector
Row 4
@ .

Col.1 Col.2 Col.3 Col.4
Row 1 w W, | CXW C
Row 2 | Wind LWind | Interim Chord
Row 3 | Vector | Vector Vector
Row 4

()

Col.1 Col.2 Col.3 Col4

Row 1 W Vior | CXW C
Row 2 Wind Total Interim Chord
Row 3 | Vector Load Vector
Row 4 Vector

(©

Col.1 Col.2 Col.3 Col.4

Row 1 X = y = z= C
Row2 | yXz - Vior CXy Chord
Row 3 tocal lacal local Vector
Row 4 axis axis axis

(d)

Fig. 3. Evolutionary storage disposition within the matrix
VC.
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At the onset of this routine, the chord-vector (C)
has been calculated by the VECTOR subroutine from
the end coordinates of the guy, and the normalized
sclf-weight vector is also available (SW). The status
of matrix VC following the normalization of the
user-inputted wind vector is shown in Fig. 3(a). The
vector of the wind load perpendicular to the cable, as
per the equations previously defined, is then calcu-
lated and stored as shown in Fig. 3(b). The magnitude
of that vector is most conveniently determined separ-
ately; the cable's diameter, as incremented by the
thickness of ice coating specified for the load case
under consideration, must be used for drag force
calculations. Further to the vectorial addition of
the ice/self-weight and wind vectors (Fig. 3c),
the local coordinate system can be defined (Fig. 3d)
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the cable-element analysis subroutine in the following
form, or variation thereof

[ RS()=F, ]
RSQ)=F,
RS(3) = F,
RS= | RS@)=F, (14)
RS(5)=T,
RS(6)=T;
| RS(6)=T; |

the transformation of eqn (11) can directly be accom-
plished by

’

po 500 I=1,3
GRS(I) = VC(I,l)
GRS (I+3) = VC(I,1)
500 CONTINUE

*

RS({1) + VC(I,2) * RS(2)
RS{3) + VC(I,2) * RS(4)

as well as the horizontal and vertical projections
of the guy cable for that load case (stored separ-
ately).

Oncece the local coordinate system has been estab-
lished and stored within VC, the aforementioned
transformation matrix T is directly obtained from a
3 x 3 subsct of the VC matrix. Explicitly

T = ,
where
Xy Yx Iy
Ts=|xy yr =y} (13
Xz Yz Iz

where x, y and z are the unit vectors of that local
coordinate system expressed in the X, Y and Z global
cartesian coordinate system. The matrix T need not
be assembled as it is alrcady contained within VC.
Furthermore, recognizing the absence of end-forces
in the local z-direction, only a 3 x 2 subset of Ty is
needed as shown below. As the vector of end-forces
at ends 7 and j of the guy are usually returned from

Similarly, rcalizing that a satisfactory 4 x4 tangent
stifiness matrix in the local coordinate system can be
constructed from the 2 x 2 module (K,) by

]

the complete 6 x 6 stiffness matrix can be easily
constructed by breaking down the transformation
process into smaller sub-matrix operations, and using
only the necessary 3 x 2 subset of T

T, 0
0 T
TsK\T{ —TsKT§
~TsK\Ts  TsK T |
Therefore, further to the calculation of that 2 x 2
stiffness submatrix (normally by another subroutine),
the following code can rapidly perform the necessary

transformation to obtain the 6 x 6 stiffness matrix in
the global coordinate system

K, (15)

Kglobal = TKIocal TT

K,
"Kl

_Kl
K

TS
0

0

7

(16)

DO 800 I=1,2
DO 800 J=1,3

800
¢
DO 850 I=1,3
DO 850 J=1,3

S(I,J) =
S(J,1) = §(1,J)
S(I+3,J+3) = S(I,J)
S(J+3,I+43) = S(I,J)
S(I+3,J) = -S(I,J)
$(J,I+3) = ~S(I,J)
S(I,J+3) = -S(I,J)
S(J+3,I) = -S(I,J)

850 CONTINUE

ST(I,J)=8(I,1)*VC(J,1) + S(I,2)*VC(J,2)

VC(I,1)*ST(1,J)+VC(I,2)*ST(2,JT)
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Col.1 Col.2 Col.3 Col.4

Row 1 i 3536
Row2| 0 . . 7071
Row 3 0 .6124
Row 4 1 14.14
@
Coll  Col2  Col3  Col4
Row 1 1| 9354 0 3536
Row2| 0 ~2673 | 6547 | .70m1
Row3 | o 2314 | -7560 | .6123
Rowd | 1 1 9354 | 14.14
* Magnitude calculated scperately
(h)
Coll  Col2  Col3  Cold
Row 1 1 9354 0 3536
Row2| © 2673 | 6547 | .70m
Row3| © 22314 | -7560 | 6123
Row 4 1 420 | 9354 | 1414
(c)

Col.1 Col.2 Col.3 Col.4
Row 1 | .3536 -.9354 0 3536
Row 2 | .7071 2673 -.6547 7071
Row 3 | .6124 2314 7559 6123
Row 4 1 1 1 14.14

@

Fig. 4. Values in VC for a numerical example.

It is noteworthy that the submatrix T nced not be
physically transposed; inverted addressing performs
the equivalent task. Finally, the simple procedures
described herein are to be repeated for each cable
present in the structure under consideration, as well
as for all load cases since the definition of the local
coordinate system, here, is loading-dependent.

4. EXAMPLE

Results from a short numerical example are pre-
sented to illustrate the above concepts, while provid-
ing an opportunity for developers to verify the
accuracy of their resuits. Here, the ends i and j of a
cable are arbitrarily located at (0,0,0) and
(5, 10, 8.66) ft, respectively, in (X, Y, Z) global carte-
sian coordinates. The wind acting on the cable is
blowing in the (1,0,0) dircction. The unstressed
length of that cable is 14.5 ft. Without loss of gener-
ality, and to keep the problem simple, ice and gravity
loads are neglected in this example. The cable diam-
eter is 0.11t, and the value of its area times the
modulus of elasticity is assumed to 3,000,000 Ib/ft%.
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: drag and gust coefficients are taken as 1.2 and

- respectively, all other coefficients being 1.0. The
design reference velocity pressure is selected to be
20 Ib/fe,

The numerical values corresponding to the vectors
presented in Fig. 3(a-d) are correspondingly tabu-
lated in Fig. 4(a—d).

The design pressure p is 40 psf, while the design
total uniformly distributed load perpendicular to the
chord becomes 4.2 Ib/ft. The horizontal and vertical
projections of the guy in the local coordinate system
are 14.14 and 0.0 ft, respectively, the latter being null
as logically anticipated in the absence of gravity-
loads. End-forces in local and global coordinates are
respectively

[ RS(1) = ~76.08 ]
RS(2) =30.44
RS(3) =76.08

RS =

RS(4)=3044 |’
RS(5) = 81.94

| RS(6)=81.94 |

TGRS(1)= —55.38 7
GRS(2) = —45.66
GRS(3) = —39.54
GRS =

GRS(4)= —1.58 |- (7)
GRS(5) = 61.93
| GRS(6) = 53.64

Finally, the numerical values for both the 2 x2
stiffness submatrix K, in local coordinates and the

global 3 x 3 T K, TT stifiness submatrix in global
coordinates are

K- 111.9  0.005!14
‘710005114 565 |
18.93 26.55 23.00

TsK,T{=|2655 56.33 48.79|. (18)
23.00 '48.79 4225

It is noteworthy that a large sag occurs in this
example, and that much accuracy is to be gained by
modelling the cable by smaller subelements,

5. CONCLUSIONS

A practical and efficient vectorial approach to
consider oads on guyed-towers' cable clements has
been formulated from a synthesis of the existing
knowledge. Sufficiently detailed practical information -
has been provided to facilitate the integration of the
proposed method into newer guyed-towers analysis
programs. ; :
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APPENDIX A
SUBROUTINE CROSS(A,B,C)
G o o e e e e e et e e e o e e o e e o e 2 B i £ e o . S e B 2 e T 2 e Bt s S 2
c THIS ROUTINE PERFORM THE VECTOR CROSS PRODUCT A X B = C
€ e e o e ot et o e o v B S0 £ o = e S 2 2 e 2 4 e 2 £ P Bt e o 1 2t A 0 e e e e
IMPLICIT REAL*8 (A-H,0-2Z)
DIMENSION A(4),B(4),C(4)
G e e e e e e e e e e e o e 1 o o o e s i e e e o e o
X = BA(2)*B(3) -~ A(3)*B(2)
Y = A(3)*B(1l) ~ A(l)*B(3)
Z = A(l)*B(2) - A(2)*B(1l)
C(4) = DSQRT( X*X + Y*Y + 2*Z )
IF(C(4).GT.0.0) GO TO 100
WRITE (*,2000)
STOP
c
C-—-—~RETURN THE AXIAIL COMPONENTS OF A UNIT LENGTH VECTOR
c AND THE RESULTING LENGTH FROM THE CROSS PRODUCT IN C(4)
c
100 ¢(3) = 2/C(4)
C(2) = Y/C(4)
Cc(l) = X/C(4)
RETURN
c
2000 FORMAT (' ** COINCIDENT VECTORS FOR CROSS PRODUCT ~ ERROR **'/)
END
(€ im0 e e e e it o e B e e e e e i 2 G 0 P o P 20 e e o o o
e e e e et e e e e e e e e o e e et et e o e e e e
c

THIS ROUTINE CALCULATE THE X, Y AND Z LENGTH PROJECTION

AND THE ACTUAL LENGTH IN V(4)

C
C
C OF VECTOR V, AND RETURN UNIT COORDINATES IN V(1) TO V(3)
C
C

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION V(4)

X
Y

XJ - XI
YJ - YI
2 23 - 21
XX = X*X + Y*Y + Z¥Z
c .

nian
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IF(XX.GT.0.0) GO TO 100
WRITE (*,2000)

STOP
c
100 V(4) = DSQRT(XX)
V(3) = 2/V(4)
V(2) = Y/V(4)
V(1) = X/V(4)
C
RETURN
2000 FORMAT ('’ ZERO LENGTH VECTOR - ERROR')
END
€ e e e e e e e e e e e e et e e e e S ot e e e o e e i
APPENDIX B
C o e e e e e et e e o o e e e 5 e e 7 B o o 7 9 o P Sem P Bt i S e o
SUBROUTINE CLOAD (VC,SW,FLOAD,NLCCUR,CD,CE,CG,CA,DIA,WTOT Duonxz,
DVERT, PROICE , NUMLCT)
" IMPLICIT REAL*8 (A-H,0-2)
DIMENSION VC(4,4),SW(4),FLOAD(12,NUMLCT)
e e e e e e e e e e e e o o o ot s ot i e o e ot e e e o e S i e 2 e 0

-— NLCCUR
FLOAD
0
VWX
DELT
THKICE
DENICE
vC
PROICE

current load case

matrix of load-case information

reference velocity pressure

X component of wind direction

change in temperature

radial ice thickness

ice density

temporary vector storage area and transformation matrix
percentage of ice thickness on that particular cable

C

C

C

C

C

C

]

Cc

C

c ¢D, CE, CG, CA = drag, exposure, gust, acceleration coefficients
c WTOT total load
[od
C
C
C
C
C
C
C
C
C
C

oo ononunn

DHORIZ = Horizontal projection of cable in local coordinates
DVERT = Vertical projection of cable in local coordinates

-- THIS SUBROUTINE DEFINES LOCAL COORDINATE SYSTEM OF CABLE
FOR A SPECIFIED LOAD CONDITION. TOTAL LOAD ON CABLE ALSO CALC.
vc(r,1), vc(I,2), AND VvC(I,3) USED TO DEFINE THE TEMP. VECT.
AT THE END OF THIS ROUTIHE:
X IN vC(I,1), Y IN VC(I,2), AND 2 IN VC(I,3) (C STILL IN VC(I,4))
SELF-WEIGHT LOCAL HORIZ. AND VERT. PROJECTION DEFINED
BY DOT PRODUCT OF C (ACTUAL LENGTH) OVER X AND Y (UNIT LENGTHS)

ZERO = 0.0D0

PI = 3.14159265

Q = FLOAD(1,NLCCUR)

VWX = FLOAD(2,NLCCUR)

VWY = FLOAD(3,NLCCUR)

VWZ = FLOAD(4,NLCCUR)

DELT = FLOAD (5,NLCCUR)

THKICE = FLOAD(6,NLCCUR) .
DENICE = FLOAD(7,NLCCUR)

C

C-~~-ADDITIONAL OPERATIONS TO BE EXECUTED AT FIRST CYCLE ONLY

C CAN BE INSERTED HERE, DEPENDING ON THE PROGRAM STRUCTURE
C

C--—- SELF WEIGHT VECTOR SW(4) PROVIDED BY OTHER ROUTINE
c
DEFF = DIA + (2.*THKICE) * PROICE
(o]
C~~—-GET WIND DIRECTION UNIT VECTOR VC(1,1)
C~—~-IF NO WIND REFERENCE PRESSURE SPECIFIED, BYPASS FOLLOWING
C
IF(Q.EQ.0.0) THEN
WWIND = 0.0
vc(l,2) = 0.0
vC(2,2) = 0.0
vC(3,2) = 0.0
GO TO 100
ENDIF

CALL VECTOR(VC(1,1),2ERO,ZERO,ZERO, VWX, VWY, VWZ)
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c .
C---- CALCULATE PRESSURE AS PER CAN3-S37-M86
e ,
PRESUR = Q*CE*CG*CA
c ,
C----GET ACTING DIRECTION OF WIND PRESSURE : (C X W) IN V(I,3)
c AND: (C X W) X C IN V(I,2)
c
CALL CROSS (VC(1,4),vC(1,1),vc(l,3))
CALL CROSS (VC(1,3),vC(1,4),vC(1,2))

Cc

C~~---DIRECTION OF PERPENDICULAR WIND UDL IS IN VC(I,2)

c CHORD DIRECTION VECTOR IS IN VC(I,4)

C ORIGINAL WIND DIRECTION IS IN VC(I,1)

C WEFF TO CONTAIN SIN*SIN OF ANGLE BETWEEN CHORD AND WIND DIR.
C

COSANG = (VC(1,1)*VC(1,4) + VC(2,1)*VC(2,4) + VC(3,1)*VC(3,4))
WEFF = 1. - COSANG*COSANG
c

C----DIAMETER OF CABLE MUST INCLUDE % OF ICE THICKNESS
C

WWIND = PRESUR * DEFF * CD * WEFF
c

C----GRAVITY VECTORIAL EFFECT MUST BE CONSIDERED (SELF WEIGHT + ICE)
C

100 CONTINUE

WICE = (DENICE * (DEFF*DEFF -~ DIAYDIA) * PI) / 4.
WGRAV = WICE + SW(4)

c
VCX = WGRAV * SW(1) + WWIND * VC(1,2)
VCY = WGRAV * SW(2) + WWIND * vC(2,2)
VCZ = WGRAV * SW(3) + WWIND * VvC(3,2)
c
CALL VECTOR(VC(1,2),ZERO,ZERO,ZERO,VCX,VCY,VCZ)
c
C----RESULTING UDL ON CABLE IN WTOT, NORMALIZED IN VC(I,2) .
c SET LOCAL AXES AS Y = -W DIRECTION, OTHERS BY CROSS PRODUCT
c Z AXIS = C X Y AND X AXIS = Y X 2
c
WIOT = VC(4,2)
ve(l,2) = -vc(l,2)
vVC(2,2) = -vc(2,2)
vC(3,2) = -vc(3,2)
vC(4,2) = 1.0
c
CALL CROSS (vC(1,4),vc(1,2),VC(l,3))
CALL CROSS (VC(1,2),vVc(1,3),VC(l,1))
c

C----NOW X AXIS IN VC(I,1), Y IN VC(I,2), AND 2 IN VC(I,3)
C----DEFINE LOCAL HORIZ. AND VERT. PROJECTION (DHORIZ AND DVERT)

c BY DOT PRODUCT OF C (ACTUAL LENGTH) OVER X AND Y (UNIT LENGTHS)
c
DHORIZ = VC(4,4)*(VC(1,1)*VC(1,4)+VC(2,1)*VC(2,4)+VC(3,1)*VC(3,4))
DVERT = VC(4,4)*(VC(1,2)*VC(1,4)+VC(2,2)*VC(2,4)+VC(3,2)*VC(3,4))
c
RETURN
END
c



